

Fraternit

STORING H2 IN AQUIFERS USING CO2 AS CUSHION GAS, THE THERMODYNAMIC BEHAVIOR OF THE SYSTEM BEN RHOUMA Sabrine – PhD candidate

Introduction Storing H₂ in aquifers

Cushion gas represents 30-60% of total gas

- Using H₂ increases investment costs
- Other cushion gases
 - would mix with H₂ and increase operational costs
 - would react with H₂ assisted by microbial activity (or other catalysers)

CO₂ as cushion gas

- Environmental benefits
- Decreases investment costs
- Interesting physical properties around critical point

Streett et al., 1983 « Phase Equilibria in Hydrogen Binary Mixtures From 63 to 280 K and Pressures to 6000 Bars ».

horizontal planes P_1 and P_2 are isobars. The shaded surface AFBEA is the region of coexistence of solid, liquid and vapor phases (see text for discussion)

Gordon, 1972 « A Supercritical Phase Separation ».

Introduction

CO_2 as cushion gas

What about $H_2 - CO_2$ mixing and reaction?

Mixing

- **thermodynamic behaviour** of the system $H_2 CO_2$;
- Reservoir conditions and reservoir quality;
- Injection and withdraw rates

Reaction (not studied here but)

- Examples of methanation in situ involve other gases, not only pure CO₂
- Sabatier reaction occurs at high temperature (300°C to 400°C)
- Uncertainty of microbial activity kinetic •

CO₂ - H₂ system Type III Phase Diagram

Property	Hydrogen	CO2	CO2 critical (32°C at 73 bars)
Density (gaseous) at 0°C, 1 bar (kg/m3)	0.089	1.951	
Density at 25° C, 100 bar (kg/m3)	7.67	813.9	434.87
Density at 50° C, 100 bar (kg/m3)	7.1	384.4	
Boiling point (1bar)	-252.76°C	-78,6°C	
Viscosity at 25° C, 100 bar (μPa-s)	9.15	75.29	35.103
Viscosity at 50° C, 100 bar (µPa-s)	9.638	28.34	
Coefficient of compressibility at 25° C, 100 bar (Z)	1.06	0.2186	0.37149
Coefficient of compressibility at 50° C, 100 bar (Z)	1.056	0.4262	

Difference in physical parameters for H2 and CO2 at same P/T conditions (data from Peace and NITS databases, 2021)

EoS capacities and limitations:

H2 % mol EoS	2	7,5	10
GERG 2008	4%	17,5%	14%
Peng Robinson	16%	10,5%	9%
SRK	16%	12%	10,5%

CO₂ – H₂ system Phase diagram

Interesting properties of CO₂ around its critical point

Density

- Derived from Equation of states;
- High density contrast between CO₂ and H₂ at CO₂ critical point and around
- "Contaminants" sensitivity in pure CO₂ phase
 - a concentration of H₂ as low as 2% could lower the density by as much as 25% compared to pure CO₂ at "CCS conditions" (Sanchez-Vicente et al, 2013)

The maximum relative error between the experimental and calculated <u>densities</u> using different EoS

EoS capacities and limitations:

relative error between the experimental and calculated densities using different EoS

EoS capacities and limitations:

BRGM

Earth

CO₂ – H₂ system Phase diagram

thermodynamic behaviour of the system H₂ - CO₂

Tsang et street

CO₂ – H₂ system Phase diagram

Conceptual model

Conclusions

Storage conditions CO₂ – H₂ system

- The investigation the P-T-x diagram of the system of interest concluded the possibility of 2 phases to exist.
- The examination of the different EoS is a valuable guidance towards a robust equation, in order to better describe the complex liquid –gas behavior.
- A multicomponent, multiphasic module

Conclusions Feasibility of $H_2 - CO_2$ aquifer storage

- Offshore reservoirs are promising targets to enable the concept,
- **Two-phase zone** would serve as buffer zone limiting mixing
- Challenge to simulate realistic cases
 - Numerical complexity
 - EoS uncertainties

Ongoing Testing Realistic case

FRENCH NATIONAL GEOLOGICAL SURVEY

HEAD OFFICE - SCIENTIFIC AND TECHNICAL CENTRE

3, avenue Claude-Guillemin BP 36009 45060 Orléans Cedex 2 - France Tél.: +33 (0)2 38 64 34 34 Fax: +33 (0)2 38 64 35 18

www.brgm.eu

RÉPUBLIQUE FRANÇAISE Liberté Égalité Fraternité

Thank you for listening

Contact: s.benrhouma@brgm.fr BEN RHOUMA Sabrine