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Flattening the load profile
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Demand/Production Profiles: Daily

4Source: Hannah Ritchie, Max Roser and Pablo Rosado, Energy Production and Consumption, 2022

https://ourworldindata.org/energy-production-consumption


Demand/Production Profiles: Seasonal

5Source: Rutz, D. et al., “Small, Modular and Renewable District Heating & Cooling Grids for Communities in South-Eastern Europe”, 2016

https://www.researchgate.net/publication/304668785_SMALL_MODULAR_AND_RENEWABLE_DISTRICT_HEATING_COOLING_GRIDS_FOR_COMMUNITIES_IN_SOUTH-EASTERN_EUROPE


Benefits of (U)TES in DHC systems

✓ Increase flexibility, efficiency and feasibility of DHCs (thus reduce CO2 
emissions and heating costs, decoupling from fuel prices, avoid the risk of 
storing fuel)

✓ Reduce investment costs by reducing generation capacity (increasing operating 
hours), pipe size in DHCs, the need for a pressurized vessel

✓ Better management of CHP plants, shifting the production of electricity when 
unit prices are higher, so maximizing profits

✓ Relieve the intermittent nature of renewable energy sources.
✓ Reduce operational cost (e.g. use of boilers and chillers, as well as pumping 

systems, by reducing mass flow rates in some areas during the peak request).
✓ Overcome the limitations in circulating mass flow rate and increasing the 

number of users connected without modifying the network design 6



Drawbacks of (U)TES in DHC systems

 Investment costs of the installation are non-negligible

 A dedicated space has to be reserved for the installation (less for UTES, 

but UTES require specific ground conditions)

 Each technology has its specific capacity and temperature limits

 Thermal losses can be significant, particularly for long-term storages

 The design of the system and the connection planning can be challenging.

 The lack of suitable supportive legislation can be problematic

7



Energy Storage Classification

 TES
Thermal Energy Storage
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UTES

Source: IESA, Classification of energy storage 
technologies: an overview, 2020

https://etn.news/energy-storage/classification-of-energy-storage-technologies-an-overview
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TES Types, Market Readiness, Size

MARKET-READY DEVELOPMENT DEMONSTRATION
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Source: van Helden, W. , Thermische Energiespeicher mit hohen 
Energiedichten., 2010



Which Type of 
Underground 
Thermal Energy 
Storage (UTES) 
is best?
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Source: Janiszewski, M., “Techno-economic aspects of seasonal underground storage of solar thermal energy in hard crystalline rocks.”, 2019

https://www.researchgate.net/publication/337707081_Techno-economic_aspects_of_seasonal_underground_storage_of_solar_thermal_energy_in_hard_crystalline_rocks/figures?lo=1


(U)TES Costs per technology/size (#1)
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Source: University of Agriculture in Krakow et al.,  TRACES - Smart strategies for the transition in coal intensive regions - Fact Sheet: Heat Storages., 2022

https://tracer-h2020.eu/wp-content/uploads/2022/11/Wybrane-aspekty-transformacji-e-book.pdf


(U)TES Costs per technology/size (#2)

12Source: Bryant, S. M., Seasonal Thermal Energy Storage in District Heating Systems., 2013

https://www.4dh.eu/resources/publications?docid=58


(U)TES Costs per technology/size (#3)
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Source: Janiszewski, M., “Techno-economic aspects of seasonal underground storage of solar thermal energy in hard crystalline rocks.”, 2019

https://www.researchgate.net/publication/337707081_Techno-economic_aspects_of_seasonal_underground_storage_of_solar_thermal_energy_in_hard_crystalline_rocks/figures?lo=1


Energy Storage Mapping in Europe
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Source: ESTMAP, “ESTMAP 
Final Review Meeting”, 
2016
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Acquifer-TES (ATES) in the Netherlands

In 1990 In 2000 In 2010
15Source: Nordell, B., “Underground thermal energy storage (UTES).”, 2012,  Innostock

https://www.researchgate.net/publication/288028431_Underground_thermal_energy_storage_UTES


TES Type TTES (Tank) PTES (Pit) BTES (Borehole) ATES (Acquifer)

Storage temp. [°C] 5°-95° 5°-95° 5°-90° 7°-18°

Storage medium Water Water (Gravel-water) Soil surrounding the boreholes Aquifers’ water

Specific capacity 
[kWh/m3]

60-80 60-80 (30-50) 15-30 30-40

Geological 
requirements

stable ground, no 
groundwater, 5-
15m

stable ground, no 
groundwater, 5-15m

drillable ground, high heat capacity & 
thermal cond., low hydraulic cond. 
(k<10-10 m/s), no flow <1m/a, 30-100m

high yield 
aquifer

Water equiv. 1m3=1m3 1m3=1m3 3-5m3=1m3 3-5m3=1m3

Investment costs 
[EUR/m3]

110-200€/m3 20-40€/m3 20-40€/m3 50-60€/m3

Advantages High charge/dis-
charge capacity

High (dis)charge 
capacity, Low I costs

Most underground properties are 
suitable

H&C, many 
suitable sites

Disadvantages High investment c Large area requir Low charge/discharge capacity Low 𝑇, Low 𝛥𝑇

Application Short-time/diurnal, 
buffer storage

Long-time >20 GWh, 
Short-time CHP

Long-time/seasonal for DH plants >20 
GWh/year

Long-time 
/seasonal
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Overview of (U)TES characteristics
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Source: University of Agriculture in Krakow et al. (2022) TRACES - Smart strategies for the transition in coal intensive regions - Fact Sheet: Heat Storages.
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Hotmaps Dispatch Model results (#1)

17Source: Ali Kök, “Achieving Carbon Neutrality in District Heating: The Impact of Temperature Levels on the Supply Mix of EU-27 in 2050”, 2023 (not yet published)



Hotmaps Dispatch Model results (#2)

18Source: Ali Kök, “Achieving Carbon Neutrality in District Heating: The Impact of Temperature Levels on the Supply Mix of EU-27 in 2050”, 2023 (not yet published)



Hotmaps Dispatch Model results (#3)

19Source: Ali Kök, “Achieving Carbon Neutrality in District Heating: The Impact of Temperature Levels on the Supply Mix of EU-27 in 2050”, 2023 (not yet published)



Hotmaps Dispatch Model results (#4)

20Source: Ali Kök, “Achieving Carbon Neutrality in District Heating: The Impact of Temperature Levels on the Supply Mix of EU-27 in 2050”, 2023 (not yet published)



Hotmaps Dispatch Model results (#5)

21Source: Ali Kök, “Achieving Carbon Neutrality in District Heating: The Impact of Temperature Levels on the Supply Mix of EU-27 in 2050”, 2023 (not yet published)



Hotmaps Dispatch Model results (#6)

Source: Ali Kök, “Achieving Carbon Neutrality in District Heating: The Impact of Temperature Levels on the Supply Mix of EU-27 in 2050”, 2023 (not yet published) 22



Conclusions: challenges and potential

• UTES compared to other TES technologies show lower investment
costs per water equivalent

• However, LCOH is not the only driver to integrate (U)TES: 
obligations to reduce emissions might force to move from boiler
and chillers to waste-heat and renewable-based DHC

• Integrating TES improves the feasibility and flexibility of DHCs

• A single winner: different UTES technologies are suitable for
different purposes and locations

23



Thank you for your attention!

conforto@e-think.ac.at
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TES Sizing

25Source:…



TES Market Readiness (#2)

26Source:…
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