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Solar thermal energy
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Source: Rutz, D. et al., “Small, Modular and Renewable District Heating & Cooling Grids for Communities in South-Eastern Europe”, 2016
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Benefits of (U)TES in DHC systems ~ DHC ® (&)thinX

Increase flexibility, efficiency and feasibility of DHCs (thus reduce CO2
emissions and heating costs, decoupling from fuel prices, avoid the risk of
storing fuel)

Reduce investment costs by reducing generation capacity (increasing operating
hours), pipe size in DHCs, the need for a pressurized vessel

Better management of CHP plants, shifting the production of electricity when
unit prices are higher, so maximizing profits

Relieve the intermittent nature of renewable energy sources.

Reduce operational cost (e.g. use of boilers and chillers, as well as pumping
systems, by reducing mass flow rates in some areas during the peak request).
Overcome the limitations in circulating mass flow rate and increasing the
number of users connected without modifying the network design i
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X |nvestment costs of the installation are non-negligible

x A dedicated space has to be reserved for the installation (less for UTES,
but UTES require specific ground conditions)

x Each technology has its specific capacity and temperature limits

x Thermal losses can be significant, particularly for long-term storages

x The design of the system and the connection planning can be challenging.

x The lack of suitable supportive legislation can be problematic
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I TES Types, Market Readiness, Size
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Source: Janiszewski, M., “Techno-economic aspects of seasonal underground storage of solar thermal energy in hard crystalline rocks.”, 2019
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| (U)TES Costs per technology/size (#1) DHC® (think
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Figure 4: Thermal energy storage investment costs (source: Worm, 2017) 11

Source: University of Agriculture in Krakow et al., TRACES - Smart strategies for the transition in coal intensive regions - Fact Sheet: Heat Storages., 2022
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I (U)TES Costs per technology/size (#3) DHC* (2)think
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Source: Janiszewski, M., “Techno-economic aspects of seasonal underground storage of solar thermal energy in hard crystalline rocks.”, 2019
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https://www.researchgate.net/publication/288028431_Underground_thermal_energy_storage_UTES

I Overview of (U)TES characteristics =~ DHC think
BTES (Borehole)

Storage temp. [°C] 5°-95° 5°-95° 5°-90° 7°-18°
Storage medium Water Water (Gravel-water) Soil surrounding the boreholes Aquifers’ water
Specific capacity 60-80 60-80 (30-50) 15-30 30-40
[kWh/m3]
Geological stable ground, no stable ground, no drillable ground, high heat capacity & high yield
requirements groundwater, 5- groundwater, 5-15m  thermal cond., low hydraulic cond. aquifer
15m (k<10-10 m/s), no flow <1m/a, 30-100m
Water equiv. 1m3=1m3 1m3=1m?3 3-5m3=1m?3 3-5m3=1m?3
Investment costs  110-200€/m3 20-40€/m?3 20-40€/m3 50-60€/m?3
[EUR/m3]
Advantages High charge/dis- High (dis)charge Most underground properties are H&C, many
charge capacity capacity, Low | costs  suitable suitable sites
Disadvantages High investment c. Large area Low charge/discharge capacity Low T, Low AT
Application Short-time/diurnal, Long-time >20 GWh, Long-time/seasonal for DH plants >20 Long-time
buffer storage Short-time CHP GWh/year /seasonal
16

Source: University of Agriculture in Krakow et al. (2022) TRACES - Smart strategies for the transition in coal intensive regions - Fact Sheet: Heat Storages.
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I Hotmaps Dispatch Model results (#2) DHC* (2)think
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I Hotmaps Dispatch Model

Full Load Hours:
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Source: Ali Kok, “Achieving Carbon Neutrality in District Heating: The Impact of Temperature Levels on the Supply Mix of EU-27 in 2050”, 2023 (not yet published)
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I Hotmaps Dispatch Model results (#4) DHC think

Installed Capacities: Installed Capacities:
20
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Source: Ali Kok, “Achieving Carbon Neutrality in District Heating: The Impact of Temperature Levels on the Supply Mix of EU-27 in 2050”, 2023 (not yet published)
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| Hotmaps Dispatch Model results (#6) DHC® (@)think
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* UTES compared to other TES technologies show lower investment
costs per water equivalent

* However, LCOH is not the only driver to integrate (U)TES:
obligations to reduce emissions might force to move from boiler
and chillers to waste-heat and renewable-based DHC

* Integrating TES improves the feasibility and flexibility of DHCs

* Asingle winner: different UTES technologies are suitable for
different purposes and locations

23
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| TES Sizing
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I TES Market Readiness (#2)

Capital requirement x technology risk

Flow batteries

Flywheel (high speed)

Superconducting magnetic

Supercapacitor
energy storage (SMES) b

Adiabatic CAES
Hydrogen
Synthetic natural gas

/ Thermochemical

Molten salt
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Lithium-based batteries

\0 Flywheel (low speed)
Ice storage Sodium-sulphur (NaS) batteries

Compressed air energy storage (CAES)

Residential hot water

heaters with storage \ Underground thermal
\energy storage (UTES)

Cold water storage ~
Pit storage

Pumped Storage Hydropower (PSH)

Research and development

Source:...
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