2nd European Underground Energy Storage Workshop

Mass exchanges between the salt cavern phases : Gas dissolution in the brine

Murad AbuAisha

Centre de Géosciences - Fontainebleau

Energy transition: Gas storage in salt caverns is used to balance between the offer and the demand

As a means to store gas: Low investment cost and low cushion gas

Good records and management of the cycled gas quantities (price in case of H_2)

Gas dissolution in the cavern brine (flux F_2)

Example: Carbon dioxide (CO₂)

The developed numerical model is general and can be used for any gas

A non-dimensional model to study the kinetics of CO_2 dissolution in brine from the laboratory to the salt cavern scale

Components of the mathematical non-dimensional model

The cavern part

1- The thermodynamic state (p, T)2- gas state law

The liquid part

 1- density changes due to the dissolution and temperature gradient
2- Navier-Stokes equation
3- liquid state law

The liquid-gas interface

1- heat exchange2- gas/mass exchange

The rock salt part

1- heat transfer

Validation on the lab. scale

Schematic representation of the pressure decay PVT cell. The CO_2 is in the super critical state, isothermal test conditions, T = 40 °C.

A comparison between the numerical and the experimental pressure histories for the two laboratory tests.

considerably the dissolution process.

Quantification of thermal effects on the kinetics of dissolution (Numerical quantification)

7

A cylindrical cavern created at depth of 600 m in a surrounding rock salt domain. The geothermal gradient gives a cavern volume averaged temperature of 44 °C. The cavern is assumed initially full of real CO_2 at a pressure of 16 MPa.

Geothermal temperature: $T_{\sigma\infty}(^{\circ}\text{C}) = 26 - 0.03 \ z \ (\text{m})$

2nd European Underground Energy Storage Workshop

Cycling during 6.5 moths (~26 cycles)

2nd European Underground Energy Storage Workshop

CONCLUSION

- A non-dimensional model that couples the cavern thermodynamics with the gas dissolution mechanisms in brine during cycling
- > This work helped better understand that:
 - 1. the quantity the dissolved gas is insignificant with regard to the initial stored mass (0.32%) or the cycled mass;
 - 2. however, the kinetics of dissolution must be quantified to broad other mass exchange phenomena (like permeation);
 - 3. and to keep good tracks of the cycled quantities of expensive gases like hydrogen.

