

Finding Synergy between CCS and Large-scale Hydrogen Storage

Gang Wang

Leverhulme Early Career Fellow

Ken Sorbie, Gillian Pickup and Eric Mackay

Heriot-Watt University

May 2023

- Role of H₂ storage in the energy transition
- Driving factors for H₂ storage/withdrawal performance
- A field example: Repurposing natural gas storage field for hydrogen storage
- Conclusions

High energy density by mass

Difficult to compress

(Aziz,2021) Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety

Central concern- storage capacity of hydrogen

82 TWH to heat Scotland (2019)

app. 2,400,000 metric tones hydrogen

> 120,000 Olympic swimming pool sized tanks @ 100 bar 25 °C

> 400 salt caverns

< 10 depleted hydrocarbon reservoirs</pre>

Calculations are for scale demonstration only.

Schematic of operation site (concept of cushion gas)

Cushion gas (CO₂, CH₄ and H₂)

- Pressure support
- Preventing water breakthrough
- Flow confinement

Set-up of 2D flow simulations

Correlated and heterogeneous permeability field

Volume ratio of CO_2 to H_2 at reservoir conditions = 2 : 1

	0-130 days	130-180 days	180-280 days	280-330 days
Case A_lowQ	CO ₂ injection	H ₂ injection	Shut in	gas production
	0-13 days	13-18 days	113-118 days	118-123 days
Case B_highQ	10 × Q	10 × Q	Shut in	10×Q

Balance between gravity and viscous forces

Comparisons of gas properties between CO_2 and H_2

 $CO_2 vs H_2$

Gas mixing

A field example- repurposing natural gas storage field for hydrogen storage

https://www.prosperoevents.com/europes-underground-gas-storage-sites-2/

A field example- repurposing natural gas storage field for hydrogen storage

Gas saturation after first-year H₂ injection

H₂ gas mole fraction after first-year H₂ injection

Permeability heterogeneity

H₂ recovery performance

H₂ threshold purity: 90%

Practical concerns:

- 1. Gas quality
- 2. Production capacity

Design of cushion gas

Varying injection timing of H2

Two-stage cushion gas

 1^{st} stage: $CO_{2,} CH_4$ or N_2 2^{nd} stage: H_2 (pre-injection)

The total volume of lifetime H_2 injections is the **same**.

A high concentration of H_2 accumulated in the near-wellbore zone is the key! 14

• Interface between H₂ and cushion gas (CO₂, CH₄ or N₂)

The low-viscosity H_2 may **infiltrate** the cushion gas in the proximity of the injectors, meaning that the cushion gas is not efficiently displaced away from the injectors in a piston-like fashion. This leads to an early and quick decrease in the H_2 purity during back production.

Reservoir heterogeneity

Permeability heterogeneity and reservoir structure play a critical role in driving the flow behaviour of gases at the reservoir scale. Poor productivity at the top of the reservoir can lead to further degradation in recovery performance.

• Design of cushion gas

A two-stage cushion gas injection strategy improves the purity of produced H_2 . A high concentration of H_2 accumulated in the near-wellbore zone is the key!

Wang, G., Pickup, G. E., Sorbie, K. S. and Mackay, E. J. [2022], Scaling analysis of hydrogen flow with carbon dioxide cushion gas in subsurface heterogeneous porous media, *International Journal of Hydrogen Energy*, 47(3), pp. 1752-1764.

Wang, G., Pickup, G. E., Sorbie, K. S. and Mackay, E. J. [2022], Numerical modelling of H_2 storage with cushion gas of CO_2 in subsurface porous media: Filter effects of CO_2 solubility, *International Journal of Hydrogen Energy*, 47(67), pp. 28956-28968.

Wang, G., Pickup, G.E., Sorbie, K.S. ., de Rezende, J. R., Zarei, F. and Mackay, E.J, [2023], "Bioreaction coupled flow simulations: impacts of methanogenesis on seasonal underground hydrogen storage", Under review.

Wang, G., Pickup, G.E., Sorbie, K.S. and Mackay, E.J, [2022], "Driving factors for the purity of withdrawn hydrogen: A numerical study of underground hydrogen storage with various cushion gases", Proceedings of the 83rd EAGE Conference and Exhibition, 6 Jun. - 9 Jun. 2022, Madrid, Spain.

Wang, G., Pickup, G.E., Sorbie, K.S. and Mackay, [2021], "Compositional Simulation of Hydrogen Storage with Carbon Dioxide Cushion Gas in Subsurface Heterogeneous Porous Media", Proceedings of the 2nd Geoscience & Engineering in Energy Transition Conference, 23 Nov. - 25 Nov. 2021, Strasbourg, France.

LEVERHULME TRUST _____

