

Energy and economic profitability of the EMO concept

A. RÉVEILLÈRE (GEOSTOCK), S. ESCAGÜES (ENEA)

November 8th, 2019

- Why does the cost structure matter ?
- Underground storage costs estimation
- Levelized cost of storage estimation
- Conclusion

Why does the cost structure matter?

Underground Energy Storage workshop | 08/11/2019 | 3

Required equipments related to:

- the transformation capacity of the facility = Electrolysis Methanation Oxycombustion
- the storage capacity of the facility = 3 salt caverns

Simplified energy technological co

Techno 1

Techno 2

nplified energy storage hnological competition			Storage demand			
		ige F	Power demand	1 MW	1 MW	GEOSTOCK ENTREPOSE
		on c	Cycles	12h/12h 365 times per year	6 months / 6 months Once a year	
			→ Storage apacity lemand	12 MWh	4 380 MWh	
Technology CAPEX breakdown			→ Total			
	« Transformation equipments »	« Storage equipments »	involved			
1 סר	1000 €/kW	100 €/kWh		2.2 M€ 🍸	440 M€	_
2 סר	5000 €/kW	10 €/kWh		5 M€	50 M€ 🍸	

A comparison of competing storage solutions has to be done carefully. Many parameters come into play:

- The investment and operation costs for « power equipment »
 - high for power-to-gas solutions, including EMO
- The investment and operation costs for « storage equipment »
 - low for salt caverns
- The cost & frequency of replacement
 - high for batteries
- The storage efficiency
 - 30% for H₂ storage; 95% for Li-ion batteries
- The market(s) conditions
 - Currently, the « capacity market » pays more than the « energy markets »
- Last, projects can combine different techniques.
 - The HDF 140 MWh storage projet CEOG (*Centrale Électrique de l'Ouest Guyanais*) combines 20 MWh of batteries and 120 MWh of H₂ storage.

Cost structures and competing technologies are driving the cycles / storage range targetted by EMO storage

• Power to gas, including EMO storage, is in competition with other techniques

What storage cycles should EMO consider ? Is this technology competitive ?

« Energy transformation », or surface equipments cost estimate

→ LCOS

GEOSTOC

- →Comparison with competing techniques
- \rightarrow Definition of cycles

Moore & Shabani, 2015

Underground costs estimation

Underground Energy Storage workshop | 08/11/2019 | 9

Nm³ per m³ : definition of an operating enveloppe and consideration of the storage cavern thermodynamics

Depth

€/m³ and per depth: Consideration of the well design, the number of wells, and the leaching cost.

- Proposition of a typical well architecture
- Cost estimate for various depths
- Adaptation of the number of wells to the acceptable flow rates

- → Cost of 0.4 €/Nm³ or 2 €/Nm³ of working gas for the weekly or seasonal storage.
- \rightarrow 1000 m case. For all gases.
- → Suited to Manosque / Etrez / Hauterives / Tersanne conditions Underground Energy Storage workshop 08/11/2019

enea

Storage service cost estimation (LCOS)

The Levelized Cost of Storage (LCOS) accounts for the capital and operating costs of each component of the EMO process

Charging and discharging account for the majority of EMO's LCOS in both interseasonal and weekly cycling scenarios

- Post oxycombustion drying unit
 Oxycombustion turbine
 Gas turbine
 CO2 cavity storage
 CO2 compression
- O2 cavity storage
- O2 compression
- CH4 cavity storage
- SNG compression
- Post methanation drying unit
- Methanation reactor
- CO2 supply
- Electrolysis

Power grid connection

Electricity conversion losses

LCOS (€/MWhel fed back into the grid)

For weekly storage, EMO competes against proven technologies

GEOSTOCK

ENTREPOSE

EMO is not competitive against CAES and pumped storage (PSPS)

GEOSTOCK

enea

ENTREPOSE

For interseasonal storage, EMO competes against other power-to-gas-to-power technologies

EMO falls within a similar cost range as other power-to-gas-topower technologies, with potential for further cost reductions

Conclusions

Underground Energy Storage workshop | 08/11/2019 | 19

Power-to-gas is adapted to interseasonal storage

- Power-to-gas cannot compete with PSPS for weekly storage demand
- Power-to-gas is costly, but it is the only suitable technology for interseasonal storage

EMO system must be able to undergo short times of discharge

- Charging assets and cavities must handle short to long charging periods (6 hours to 8 days)
- Discharging assets and cavities must handle very short to moderate periods (6 hours to 8 days)

Thank you for your attention !

Acknowledgments:

We are thankful to the **ANR FluidStory** project for funding us in this work We also thank **Guillaume d'Herouville**, whose final year internship produced part of the comprehension presented (in the caverns costs section)