

Thermodynamic and geochemical behavior of salt caverns

Salaheddine Chabab, Pascal Théveneau, Jérôme Corvisier, Christophe Coquelet

MINES ParisTech

35 Rue Saint Honoré 77305 Fontainebleau Cedex FRANCE

1. Introduction : Context and goals

1. Introduction : Phase diagram

O Van Konynenburg and Scott Classification

1. Introduction : Phase diagram- Salting out effect

O Results

Solution with NaCl 4M

1. Introduction : Phase diagram- Salting out effect

O Results

Solution with NaCl 4M

Addition of salt

Liquid phase

1. Introduction : Phase diagram- Salting out effect

O Results

Solution with NaCl 4M

Vapor phase

2. Experimental aspects: Equipments

a) Static-analytic setup

2. Experimental aspects: Equipments

b) Rocking cell setup (volumetric method)

Solubility measurements performed:

• CO_2 + H_2O + Na^+ + CI^-

•
$$O_2$$
 + H_2O + Na^+ + CI^-

• 3.1 PR-CPA model (cubic plus association)

2 terms:

Cubic EoS: Peng – Robinson (Peng et Robinson, 1978)

>Association term from Wertheim's theory (Wertheim, 1984)

$$P = \frac{RT}{v-b} - \frac{a(T)}{v(v+b) + b(v-b)} - \frac{1}{2} \frac{RT}{v} \left(1 + \rho \frac{\partial \ln(g)}{\partial \rho}\right) \sum_{i} x_{i} \sum_{A_{i}} (1 - X_{A_{i}})$$

$$PR \text{ EoS} \qquad \text{Wertheim's term}$$

$$a_{i} = a_{c,i} \times \left[1 + m_{i} \left(1 - \sqrt{\frac{T}{T_{c,i}}}\right)\right]^{2} \qquad a_{c,i} = \Omega_{a} \frac{R^{2}T_{c,i}^{2}}{P_{c,i}} \qquad b_{i} = \Omega_{b} \frac{RT_{c,i}}{P_{c,i}}$$

$$A^{A_{i}B_{j}} = g(\rho) \left[\exp\left(\frac{\varepsilon^{A_{i}B_{j}}}{RT}\right)\right] b_{ij} (\beta^{A_{i}B_{j}})$$

$$g(\rho) = \frac{1}{1 - 1.9 \left(\frac{1}{4}b\rho\right)}$$

9

For water, m_i , $a_{c,i}$ and b_i parameters are adjusted on experimental data: vapor pressure and liquid densities.

• 3.1 PR-CPA model (cubic plus association)

Associating term:

- Self-association (between two identical molecules)
- Cross Association (between two different molecules)

Self association (ref : wikimédia)

For water, ϵ and β parameters are adjusted on experimental data: pure component vapor pressure and liquid densities.

• 3.2 Application of PR-CPA model to CO₂-H₂O binary system

> H_2O : 4 sites of association (type 2ed–2ea (4C)), two sites electron donnor and two sites electron acceptor

ed : electron donnor ea : electron acceptor

Water content(y_{H2O})

• 3.2 Application of PR-CPA model to CO_2 -H₂O binary system

 CO_2 solubility in pure water (x_{CO2})

• 3.3. Extension to electrolytes (e-PR-CPA)

$$A^{e-PR-CPA} = A^{\#} + A^{PR} + A^{Assoc} + A^{E}$$

GP PR-CPA Electrolyte term

$$A^{E} = A^{MSA} + A^{Born}$$

- MSA term (Mean Spherical Approximation: long range interaction

$$\frac{A^{MSA}}{RT} = -\frac{N_{Av}e^2}{4\pi D_0 DRT} \sum_i \frac{n_i Z_i^2 \Gamma}{1 + \Gamma \sigma_{b,i}^{MSA}} + \frac{V \Gamma^3}{3\pi N_{Av}}$$

$$\frac{A^{\text{Born}}}{RT} = -\frac{N_{\text{Av}}e^2}{4\pi D_0 RT} \left(1 - \frac{1}{D}\right) \sum_i \frac{n_i Z_i^2}{\sigma_{b,i}^{\text{Born}}}$$

Thermodynamic properties from $A^{e-PR-CPA}$ $P = -RT \left(\frac{\partial \left(\frac{A^r}{RT} \right)}{\partial V} \right)_{T,n} + \frac{nRT}{V}$ $\ln(\varphi) = \left(\frac{\partial \left(\frac{A^r}{RT} \right)}{\partial n_i} \right)_{T,V} - \ln(Z)$

Other properties (Michelsen & Mollerup 2004)

• 3.4. Parametrisation of e-PR-CPA model

Parameters for each ion: m_i , $a_{0,i}$ and σ_i

$$a_i(T) = a_{0,i} \left[1 + m_i \left(1 - \sqrt{\frac{T}{298.15}} \right) \right]^2 \qquad b_i = \frac{N_{A\nu} \pi \left(\sigma_{b,i}^{hs} \right)^3}{6}$$

Binary interaction parameters: $K_{H_2O-anion}$, $K_{H_2O-cation}$ et $K_{cation-anion}$

$$a = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j \sqrt{a_i a_j} \left(1 - k_{ij} \right)$$

*MIAC = mean ionic activity coefficient

4. Experimental results and modeling

• 4.1. Application of e-PR-CPA model to $CO_2 + H_2O + Na^+ + CI^-$ system

Chabab, S., Théveneau, P., Corvisier, J., Coquelet, C., Paricaud, P., Houriez, C., & El Ahmar, E. (2019). Thermodynamic study of the CO2–H2O–NaCl system: Measurements of CO2 solubility and modeling of phase equilibria using Soreide and Whitson, electrolyte CPA and SIT models. International Journal of Greenhouse Gas Control, 91, 102825.

4. Experimental results and modeling

4. Experimental results and modeling

• 4.3. Application of e-PR-CPA model to $CH_4 + H_2O + Na^+ + CI^-$ system

No solvation

5. Geochemical modeling

No reactivity with salts but potential reactivity with

- insolubles (sulfates...) $CH_4 + SO_4^2 \rightarrow H_2S + CO_3^2 + H_2O$
- well materials (cement...) CO₂ + Ca²⁺ + OH⁻ → CaCO_{3(s)} + H⁺

Impact on stored gas quality Impact on storage sealing

- Importance of thermodynamic properties
- Complexity of phase diagram
- Effects of T, P and salinity (salting out effect) perfectly known
- Development of new equipment for phase equilibrium measurements
- Solubility of CO₂, O₂ and CH₄ determined
- Comparison of two models for the data treatment and the representation of phase diagrams

Acknowledgements

ANR and partners of FLUID Story project

CTP team

Alain Valtz, Snaide Ahamada, CTP Workshop

Heriot Watt University team

Pr. Antonin Chapoy

Additional slides

1. Introduction : Phase diagram- PT envelop

O Results

CO_2
0.9
0.7
0.5

PT Envelop binary system CO_2 + for 3 compositions. Dashed line : Pure CO_2 vapor pressure. Dotted line: mixture critical point line. Vertical line : melting temperature of CO_2 .

1. Introduction : Phase diagram- densities

O Results

Pressure molar volume diagram of O_2 (0.5) + CO_2 (0.5) binary system at 230, 250, 270, 290, 310, 370 and 400 K. Symbol: experimental data (vibrating tube densitometer)

Comparison with EoS prediction (PR EoS) using parameters fitted on VLE data

Analysis of compressibility factor

1. Introduction : Phase diagram- densities

O Results

Good evolution of compressibility factor (see results at 120 deg C)

Z=1 if p->0

Gas hydrate prediction (e-PR-CPA model)

Prediction of gas hydrate phase diagram for the $CO_2 + O_2$ binary system

