

Gateway to the Earth

How to classify underground energy storage capacities

European Workshop on Underground Energy Storage

Ed Hough, Dan Parkes, Dave Evans, Michelle Bentham British Geological Survey eh@bgs.ac.uk

Pro's and Con's of resource estimates

- Good
 - Based only on technical factors
 - Storage volume distribution and properties
 - Cap rock distribution
 - Pore volumes where fluids can be retained
 - Storage efficiency factors
 - Good first pass to see where capacity lies
- Bad
 - Does not take geological risk into account
 - Does not take economics into account
 - Produces some large and misleading numbers
 - Need to make the limitations of the estimate clear

Resource assessments can be (criteria, areas, recovery factors)

1		confu	sina	variant1	variant2
179.2 60	01.2	PGI-NRI, 2017/2018	J		
244	779.3	PGI-NRI, 2017			
85	51	2120	EUOGA, 2016		
265.2	822	PGI-NRI, 2016			
266.9	797.4	PGI-NRI, 2015			
		4100		EIA, 2013, 2015	
38.5 USG	S, 2012				
346	768	PGI-NRI, 2012			
1	.000	Rystad Energy, 2010			
		5300			EIA, 2011
	1400	Wood-McKenzie, 2009			
		3000	ARI, 2009		
V					
© UKRI All rights	s reserved				

Aquifer (pore) storage

- Learn from CCS
- Simple calculations using basic volumes and geological parameters
- Static models:
 - Static capacity estimates need to be followed up by detailed assessments
 - The estimate does not take into account other factors such as pressure increases, time factors, injectivity, multiple injections into one storage unit, displacement of pore fluid etc.....
- Dynamic models...
 - Can potentially provide a better estimate of capacity. However more data is required, too time consuming and costly to do for a whole country, so can only be carried out on a site by site basis.....

Classification of storage capacity

CSLF (Carbon Sequestration **Leadership Forum**) Increasing certainty of storage potential Matched capacitv Practical capacitv Effective capacity Theoretical capacity

CSLF storage capacity estimations

The general idea (pore volume storage)

Consideration of physical/volumetric trapping mechanisms for CO₂ storage capacity estimations

Why? Because they are the dominant trapping mechanism during the period of injection !

 \Rightarrow Estimation of the mass of CO₂, that could be physically stored in the pore volume (voids) of the reservoir rock (pore volume calculation)

So for estimations we essentially use formulas of the form:

Mass of CO_2 = Pore volume of reservoir rock • CO_2 density

[kg] =

[m³]

[kg/m³]

Hydrocarbon fields

- Assumes:
 - most of the volume previously occupied by the produced hydrocarbons becomes available for storage
 - Gas/fluid will be injected into depleted oil and gas reservoirs until the reservoir pressure is brought back to the original reservoir pressure

Gas and oil field storage capacities

Gas Reservoirs

 $M_{CO2t} = \rho_{CO2r} \times R_f \times (1-F_{IG}) \times OGIP \times [(P_s \times Z_r \times T_r) / (P_r \times Z_s \times T_s)]$

This can be simplified to: $M_{CO2t} = \rho_{CO2r} \times [V_{GAS} (stp) / Bg]$

Oil reservoirs $M_{CO2t} = \rho_{CO2r} x [R_f x OOIP / B_f - V_{iw} + V_{pw}]$ This can be simplified to: $M_{CO2} = (V_{OIL} (stp).B_o) \cdot \rho CO_2$

M _{CO2t}	Theoretical storage capacity (10 ⁶ tonnes)	
ρ_{CO2r}	CO ₂ density at reservoir conditions (kg m ⁻³)	
stp	Standard temperature and pressure	
V _{GAS} (stp)	Volume of ultimately recoverable gas at stp (10 ⁹ m ²)	3)
Bg	Gas expansion factor (from reservoir conditions to stp)	ĺ

 $V_{O/L}$ (stp) Volume of ultimately recoverable oil at stp (109 m3) Bo Oil formation volume factor

Aquifer storage

Regional aquifer storage estimation:

 $\mathbf{M}_{\mathbf{CO2}} = \mathbf{A} \cdot \mathbf{h} \cdot \Phi_{\mathbf{rock}} \cdot \rho_{\mathbf{CO2}} \cdot E_{\mathbf{r}}$

M_{CO2}: Mass of stored CO₂

A: Areal extent of aquifer (or area being assessed)

h: Average thickness of aquifer

 $\Phi_{\rm rock}\!\!:$ Average porosity of reservoir rock over thickness h

 ρ_{CO2} : Average density of CO_2 under reservoir conditions

Er: Regional storage efficiency factor

➡ Effective Capacity

Aquifer storage- considerations

Storage capacity:

- In structural and stratigraphic traps
- Processes between gas injection site and trapping points
 - Dissolved in formation waters?
 - Mineral precipitation
 - Other processes (e.g., H2 and microbial action)

Practical and matched capacity

CSLF (Carbon Sequestration Leadership Forum)

Practical Capacity-

Economical, regulatory, legal constraints will reduce capacity

Matched Capacity

Is the site connected to a source?

Cavern storage

Parameters

- Holford #165-
 - Operational
 - Triassic, bedded halite
 - 1 cavern, 70 m x 70 m x 70 m
 - Cavern depth (top, base): 350, 420 m bgl
 - Cavern volume 175,000 m³
 - Pressure range: Max = ~8.5MPa/1233psi/85bar; Min = ~7MPa/1015psi/70bar

Status	Age, sites	Volume (mcm)	
Operational	Triassic: 5 sites	16+	
	Permian: 2 sites	4.41	
Sum	7 sites	20.41+	
Planned	Triassic: 5 sites,	40.27	
	Permian: 2 sites	5.86	/
Sum		46.13	
Total		66.54	

Geological model: halite

Constraints

Halite

- Thickness of halite >20 m
- Casing shoe 250 m 1500 m (deeper- ref. Gaelectric)
- 10 m roof salt, plus casing shoe 10 m below roof
- Floor salt >10 m

• Cavern

- Radius 50 m
- Pillars 3R = 150 m
- Regular hexagonal close packed grid

Sources of error

- Maximum volumes rarely utilised
- Raw caverns assumes cylindrical (shape factor 0.7 applied)
- Insolubles modelled across basins (20% volume reduction)
- Remove unfeasible caverns (existing infrastructure and facilities, geology- faults, wet rockhead) (74% volume reduction)

Buffering- potential caverns

For H-storage, rank potential caverns by GWh based on capacitiy

Blue – 180 GWh Orange – 16500 GWh

Confidence given by comparing to existing cavern volumes

Gateway to the Earth

How to classify underground energy storage capacities

European WorkshULUAR Underground Energy Storage Ed Hough, Dan Parkes, Dave Evans, Michelle Bentham British Geological Survey eh@bgs.ac.uk