PSLA PROCESS MODELLING AND CAPACITY BUILDING POTENTIAL FOR APPLICATION OF EMO STORAGE CONCEPTS

Nouaamane **KEZIBRI**

08th November 2019

PRESENTATION PLAN

- Electrolysis, Methanation, Oxycombustion
 - Overall concept
 - Main components
- Steady state performance
 - Efficiency
 - Sensitivity analysis
- Dynamic behavior & intermittent operation
 - Transient response
 - Case study

EMO unit Concept, Main components

$1 \bullet 0 \circ 0 & 2 \circ 0 \circ 0 & 3 \circ 0 \circ 0$

021

CO2 Cavern

CH4

CH4

H₂

EMO CONCEPT

Power-to-Gas Electrolysis + Methanation **Gas-to-Power** Oxycombustion plant **Storage** underground caverns

+ Oxygen utilization+ Easy carbon dioxide capture

$1 \bullet \bullet \circ \circ 2 \circ \circ \circ 3 \circ \circ \circ$

PEM ELECTROLYSIS : PROCESS LAYOUT

Water purification :

Reverse osmosis and deionization

Electric conversion :

Converter and rectifier assembly

PEM stack :

Anode : $H_2O \rightarrow 0.5 O_2 + 2H^+ + 2e^-$ Cathode : $2H^+ + 2e^- \rightarrow H_2$ Overall : $H_2O_{(l)} \rightarrow 0.5 O_{2(g)} + H_{2(g)}$ **PEM Module** :

Hydrogen and oxygen loops : separator vessels, pumps, resins, water condensers

Cooling system :

Stack thermal regulation, gas cooling and rectifier cooling

Hydrogen purification :

Catalytic reaction and water adsorption

Adapted from T. Smolinka et al. (2017), PEM electrolysis for hydrogen production, CRC Press.

RWGS

$1 \bullet \bullet \bullet \circ 2 \circ \circ \circ \circ 3 \circ \circ \circ$

METHANATION : PROCESS LAYOUT

4 stages methanation based on TREMP[™] Process :

OXYCOMBUSTION : PROCESS LAYOUT

The oxycombustion plant consumes oxygen produced by the electrolysis process to burn SNG and produce a CO_2 rich flue gas :

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

- ✓ High, medium and low pressure turbines
- ✓ Steam injection at 1st oxy-boiler
- ✓ Flue gas injection at 2nd oxy-boiler

Steady state performance Efficiency, Sensitivity analysis

PEM ELECTROLYSIS : TEST RIG MODEL

PEM ELECTROLYSIS : SCALED UP PROCESS

- Scale up strategy : Modular design to satisfy the requirements of flexibility, deployment and investment cost.
- ✓ Chosen configuration : 20 electrolysis modules of 10 MW_t each.
- ✓ Operating current density : 10 A/cm² for cost-effective stacks with similar energy performance.

11

PEM ELECTROLYSIS : SCALED UP PROCESS

METHANATION : HEAT INTEGRATION

METHANATION : HEAT INTEGRATION

- Methodology : **pinch analysis** was preformed to recover heat using an optimized heat exchanger network (HEN)
- Results : 60% recovered as HP steam at 250°C and 34% as LP steam at 125°C

METHANATION : HEAT INTEGRATION

OXYCOMBUSTION : PERFORMANCE

EMO UNIT : PERFORMANCE

Power-to-Gas Dynamic Operation

Control system, Transient response, Case study

PEM ELECTROLYSIS : TRANSIENT STATE

1. Start up phase :

- ✓ Cold start up is performed to reach rated power
- ✓ Less than **5 min** are required to reach nominal power

2. Standby phase :

- ✓ System operation without hydrogen production
- ✓ Around 4 hours before reaching room temperature

METHANATION : TRANSIENT STATE

Ramp-up and ramp-down operation

- ✓ Ramp-up : from minimal to nominal load : 48% to 100%
- ✓ Ramp-down : from 100% to 48%
- ✓ Operation range set to keep temperature between 250 and 600°C

→ H2 feed flow → CO2 feed flow

Time [min]

19

Time [min]

CASE STUDY : WIND ENERGY STORAGE

Wind park performance

- ✓ SAM tool to generate power production profiles
- Two modeled periods: summer and winter
- ✓ Rated power of 300 MW_e

Power-to-Gas

- ✓ High flexibility of PEM electrolysis system
- Limited operational periods for methanation process

August

Prediction of the monthly production of hydrogen and synthesis gas from wind energy:

 \rightarrow Annual consumption of 91,752 tonnes of CO₂, equivalent to an annual operating time of **560 hours** for the oxy-combustion process.

→ 6.1% of SNG backup required

Thank you for your attention